sexta-feira, 22 de março de 2019



x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D

Lei de Fourier[editar | editar código-fonte]

A lei da condução térmica, também conhecida como lei de Fourier, estabelece que o fluxo de calor através de um material é proporcional ao gradiente negativo de temperatura. Podemos enunciar esta lei de duas formas equivalentes: a forma integral, em que olhamos para a quantidade de energia que flui para dentro ou para fora de um corpo como um todo; e a forma diferencial, em que olhamos para os fluxos de energia localmente. O fluxo de calor é a quantidade de energia que flui através de uma unidade de área por unidade de tempo.
Lei de Fourier.
Pode-se determinar o fluxo de calor transportado por condução pela Lei de Fourier:
A expressão acima aplica-se ao caso unidimensional, quando há gradiente de temperatura apenas na direção .
Se a distribuição de temperatura for linear e, neste caso , a equação acima toma a forma:
A constante , é a condutividade térmica do material. Entre duas substâncias, a que tiver condutividade maior conseguirá transferir uma quantidade maior de calor, para uma mesma diferença de temperatura.

Teorização completa[editar | editar código-fonte]

Modelo de um tubo de aquecimento, resfriado por hastes metálicas
Existem várias grandezas envolvidas, mas entre elas existem duas que são de muita importância de interesse prático no estudo de problemas de condução de calor. Estas grandezas são a razão de fluxo de calor e a distribuição da temperatura. As razões de fluxo de calor tratam da demanda de energia em um dado sistema, quando se requer uma distribuição de temperaturas conveniente para desenhar de maneira adequada no sistema, desde o ponto de vista dos materiais. Em um fenômeno qualquer, uma vez que seja conhecida a distribuição da temperatura é possível determinar as razões de fluxo de calor com ajuda da denominada Lei de Fourier(de 1822, estabelecida por Jean Baptiste Joseph Fourier).
A distribuição da temperatura é linear, e o fluxo de calor é constante de um extremo a outro de uma placa, para o caso da equação radial produzida.
E portanto a distribuição da temperatura apresenta-se em forma logarítmica:
calor transferido  é tratado pela lei de Fourier que descreve especificamente previsões (modelagens) de comportamento para o caso simples de um corpo sólido, com duas paredes paralelas[15][16]:
A unidade de  é o Watt (), e sendo as grandezas:
  •  a temperatura da superfície da parede mais quente
  •  a temperatura da superfície da parede fria
  •  da área através da qual o calor flui,
  •  a condutividade térmica, geralmente um parâmetro do material dependente da temperatura, e
  •  a espessura do corpo, medido de parede a parede.
Atualmente a transferência de calor é descrita através do conceito mais rigoroso de fluxo de calor , em abordagens que visam reduzir-se aos tratamentos de Fourier e Newton. A notação  é formulada a partir da derivada parcial no tempo do vetor fluxo de calor . Aplica-se a seguinte definição:
Matematicamente, o fenômeno de "transferência de calor" é descrito por uma equação diferencial parcial, apresentando um padrão parabólico. Esta equação diferencial parcial, na forma especificada, apresenta a forma geral:
Sendo esta equação especial e chamada comumente equação do calor. Note-se que esta forma da equação do calor é válida somente para meios homogêneos e isotrópicos; noutras palavras, para meios que possuem a mesma composição em todos os lugares e nenhuma orientação preferencial (ocorrem orientações preferenciais, por exemplo, em fibras de materiais compostos, mas também por dilatações de grãos em chapas de aço laminadas, etc). Para estes casos - e apenas para isso , as propriedades materiais são adotadas com o objetivo de considerar apenas as grandezas dependentes da temperatura. Estritamente falando, a equação assim formulada não se aplica apenas quando o calor no corpo é introduzido ou removido por fenômenos estranhos à modelagem utilizada, sendo, neste caso, a fonte ou "fuga" um termo a ser adicionado ao equacionamento. Com estas restrições, segue-se a seguinte forma da equação do calor:
Sendo esta a equação diferencial que descreve os processos de transporte em geral (como o processo de difusão - que é um transporte material, devido a ser compreendido como uma diferença de concentração ou, no caso da equação do calor, apenas o "andar" da distribuição de temperatura em um corpo devido a um gradiente de temperatura). A solução analítica dessa equação não é em possível muitos casos práticos, sendo calculados, atualmente, com a ajuda de métodos tecnicamente relevantes de cálculos para fenômenos de transferência de calor como o método dos elementos finitos, obtendo-se como resultado a distribuição temporal da temperatura no espaço (um campo de temperaturas). Assim, pode-se obter influências, por exemplo, relacionadas ao comportamento de expansão espacial dos componentes (dilatação térmica), que por sua vez influenciará o estado de tensão local. Assim, o campo de temperaturas torna-se uma base importante para todas as tarefas de engenharia em que o componente de estresse térmico não pode ser negligenciado no projeto.














x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Em físicacondutância térmica de contato é o estudo da condução térmica entre corpos sólidos em contato. O coeficiente de contato térmico, é uma propriedade indicando a condutividade térmica, ou habilidade em conduzir calor, entre dois corpos em contato. O inverso desta propriedade é a propriedade da resistência térmica de contato.

Quando dois corpos sólidos entram em contato, tal como A e B na Figura 1, o calor flui do corpo mais quente para o corpo mais frio. A partir da experiência, o perfil de temperatura ao longo dos dois corpos varia, aproximadamente, como mostrado na figura. A queda de temperatura é observada na interface entre as duas superfícies em contato. Este fenômeno é dito ser um resultado de uma resistência térmica de contato existindo entre as superfícies em contato. A resistência térmica de contato é definida como a razão entre esta queda de temperatura e o fluxo de calor médio através da interface.[1]
De acordo com a lei de Fourier, o fluxo de calor entre os corpos é encontrado pela relação:
 (1)
onde  é o fluxo de calor,  é a condutividade térmica,  é a área da seção transversal e  é o gradiente de temperatura na direção do fluxo.
Das considerações de conservação de energia, o fluxo de calor entre os dois corpos em contato, corpos A e B, é encontrado por:
 (2)
Pode-se observar que o fluxo de calor está diretamente relacionada à condutividade térmica dos corpos em contato,  e , a área de contato,  e a resistência térmica de contato, , a qual, como previamente notado, é o inverso do coeficiente de condutância térmica, .














teoria da relatividade categorial Graceli

ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D











NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.


E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



Sobre padrões de entropia.

Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


Princípio tempo instabilidade de Graceli.

Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


as dimensões categorias podem ser divididas em cinco formas diversificadas.

tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



paradox of the system of ten dimensions and categories of Graceli.



a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



that is, categories ground the variables of phenomena and their interactions and transformations.



and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



as well as transitions of energies, phenomena, categories and dimensions.

paradoxo do sistema de dez dimensões e categorias de Graceli.

um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

como também transições de energias, fenômenos, categorias e dimensões.







 = entropia reversível

postulado categorial e decadimensional Graceli.

TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
matriz categorial Graceli.

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].